IMEX Third-Order SBDF Scheme for Pricing American Options under Kou’s Jump-Diffusion Models

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced order models for pricing European and American options under stochastic volatility and jump-diffusion models

European options can be priced by solving parabolic partial(-integro) differential equations under stochastic volatility and jump-diffusion models like Heston, Merton, and Bates models. American option prices can be obtained by solving linear complementary problems (LCPs) with the same operators. A finite difference discretization leads to a so-called full order model (FOM). Reduced order model...

متن کامل

An Iterative Method for Pricing American Options under Jump-Diffusion Models

We propose an iterative method for pricing American options under jumpdiffusion models. A finite difference discretization is performed on the partial integro-differential equation, and the American option pricing problem is formulated as a linear complementarity problem (LCP). Jump-diffusion models include an integral term, which causes the resulting system to be dense. We propose an iteration...

متن کامل

Pricing forward starting options under regime switching jump diffusion models

Abstract: This paper studies the pricing of forward starting options under regime switching jump diffusion models. We suppose that a market economy has only two states, one is a stable state, the other is a high volatility state. The dynamics of a risky asset is modeled by a geometry Brownian motion when the market state is stable, otherwise, it follows a jump diffusion model. We propose two ty...

متن کامل

A Computational Scheme for Options under Jump Diffusion Processes

In this paper we develop two novel numerical methods for the partial integral differential equation arising from the valuation of an option whose underlying asset is governed by a jump diffusion process. These methods are based on a fitted finite volume method for the spatial discretization, an implicit-explicit time stepping scheme and the Crank-Nicolson time stepping method. We show that the ...

متن کامل

A fast high-order sinc-based algorithm for pricing options under jump-diffusion processes

An implicit-explicit Euler scheme in temporal direction is employed to discretize a partial integro-differential equation, which arises in pricing options under jumpdiffusion process. Then the semi-discretized equation is approximated in space by the Sinc-Galerkin method with exponential accuracy. Meanwhile, the domain decomposition method is incorporated to handle the non-smoothness of the pay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2018

ISSN: 2324-7991,2324-8009

DOI: 10.12677/aam.2018.71014